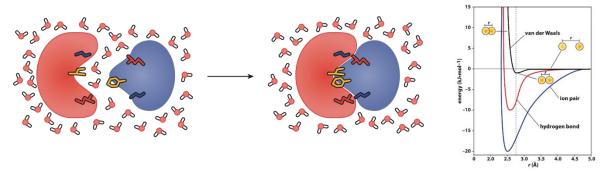
EPFL

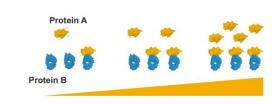

BIO-212 - Lecture 13 Kinetics and Catalysis

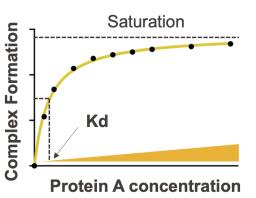
 École polytechnique fédérale de Lausanne

Lecture 12 - Summary

Biomolecular interactions and binding

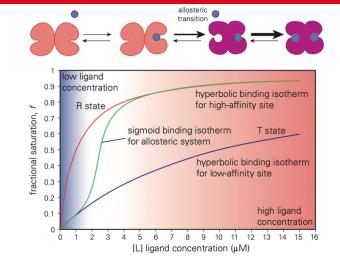
- Small energy contributions from hydrogen bonds, vdW, ionic and hydrophobic interactions
- Water can have a positive and negative impact on binding
- Dissociation constants and affinity

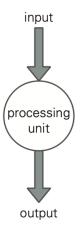

$\Delta G^{\circ} = RT \ln K_D = \Delta H - T\Delta S$


$$\frac{\mathbf{k}_{d}}{\mathbf{k}_{a}} = \frac{k_{off}}{k_{on}} = \frac{[P][L]}{[P \cdot L]} = K_{D} = \frac{1}{K_{A}}$$

- Thermodynamic and kinetic analysis of binding

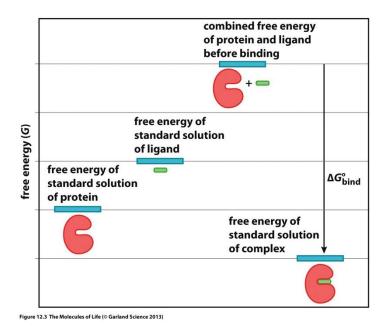
Experimental methods for Kd determination


 Titrate one binding partner and measure complex formation



- Calorimetric (ITC) or spectroscopic (FP, SPR, NMR) measurements

Cooperativity and Allostery



Two different ways of assessing binding

Thermodynamic approach

What is the difference in free energy between the unbound and bound state?

Measuring the energy change at steady state to calculate K_d

$$\Delta G^{\circ} = RT \ln K_{d}$$

Kinetic approach

How fast does the ligand bind the protein? How fast does the complex dissociate?

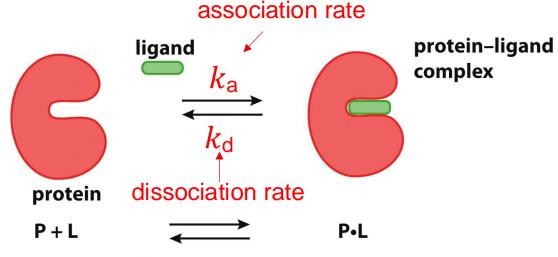
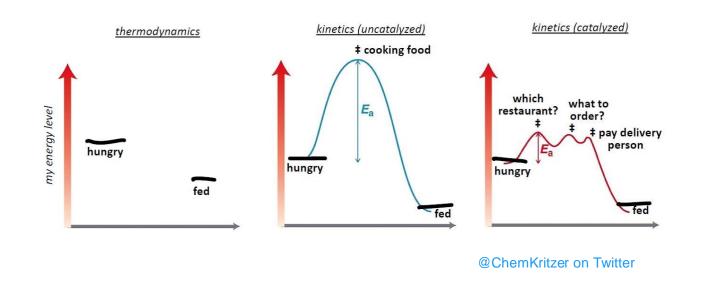


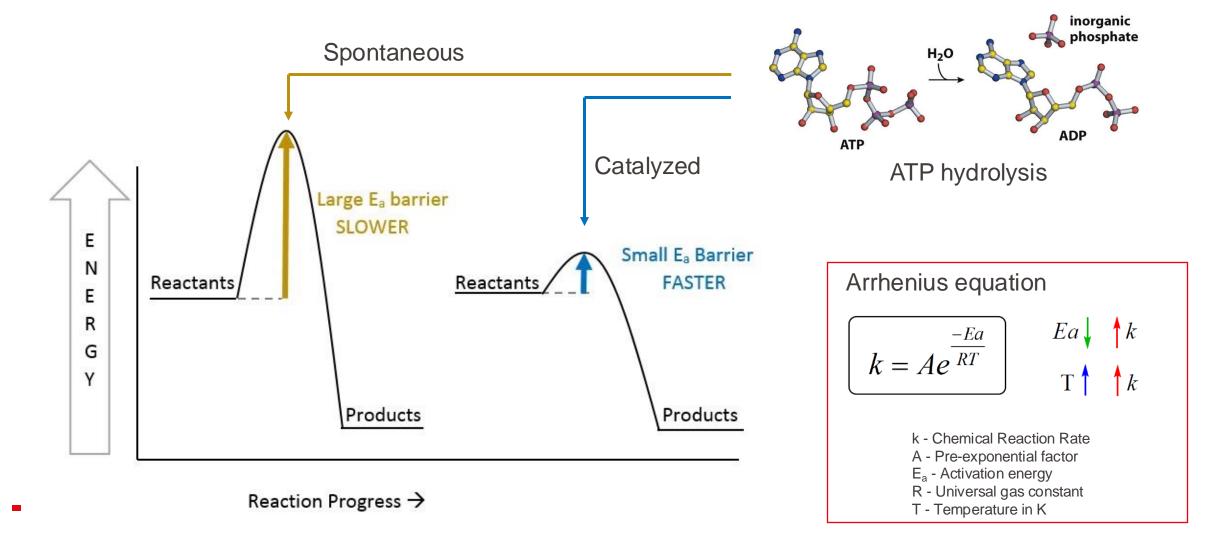
Figure 12.2a The Molecules of Life (© Garland Science 2013)


Measuring the rates at which system achieves equilibrium (k_a and k_d) to calculate K_d

$$\frac{\mathbf{k}_{d}}{\mathbf{k}_{a}} = \frac{k_{off}}{k_{on}} = \frac{[P][L]}{[P \bullet L]} = K_{D} = \frac{1}{K_{A}}$$

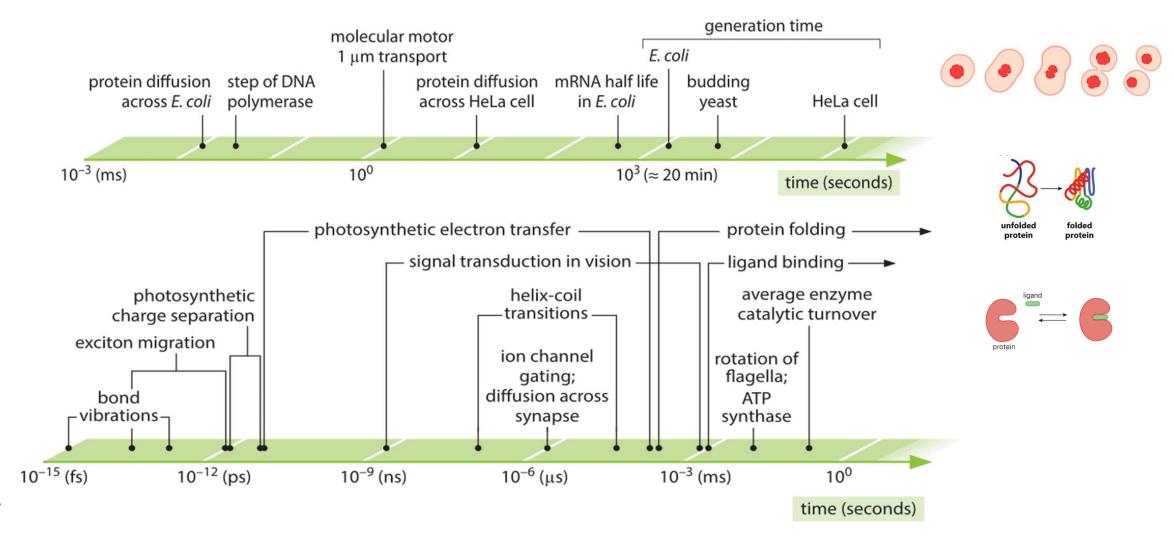
Thermodynamics vs Kinetics

- Thermodynamics has no concept of time
- Thermodynamics does not consider the pathway only considers initial state and final state and tell us whether a reaction is spontaneous based on that
- Kinetics considers the rate of changes and the reaction pathway from reactants to products



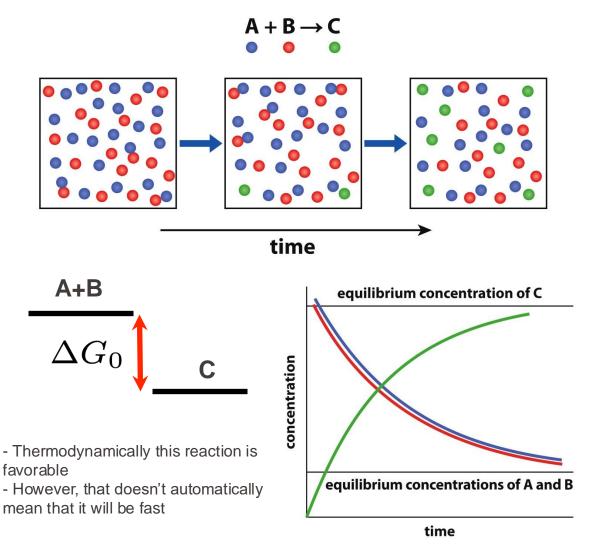
Activation energy and reaction rate

- Reaction rates are exponentially and inversely correlated to the activation energy
- The reactions below have the same ΔG° and K_{eq} but different rates



General aspects of reaction kinetics

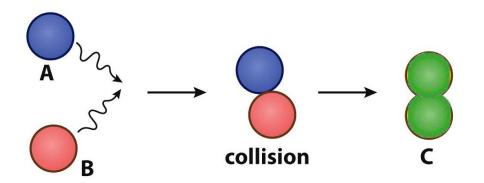
Kinetics of biological processes


- Biological processes span over a wide range of timescales
- Typically, smaller systems will exhibit faster turnovers (e.g., chemical bond vibrations vs cell division)

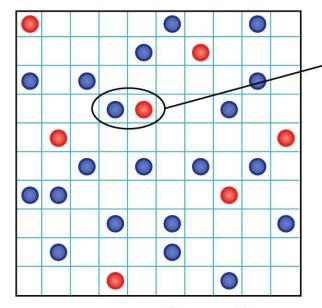
Kinetics of simple reactions

- Let's look at a simple chemical reaction where A and B react to produce C (can also be thought of as binding)
- The system is initially not in equilibrium but with time A and B convert to C

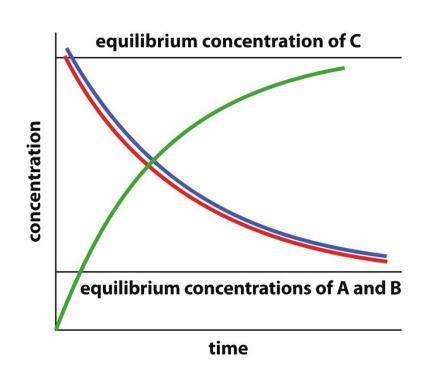
- For quantification **molecular concentration** (# molecules/moles per unit of volume) are used
- The **rate of reaction** defines how efficiently the reactants change to products with time


$$rate = -\frac{d[A]}{dt} = \frac{d[C]}{dt} = k[A][B]$$

- The rates of reactants are always negative and the rates of products are always positive
- **k is called a reaction rate constant** (equivalent to k_a and k_d we discussed in Lecture 12)


Reaction rates depend on molecular collisions

- The collision rate is proportional to the product of concentrations of reactants
- Higher temperature increases the diffusion rates of molecules and the likelihood of collisions

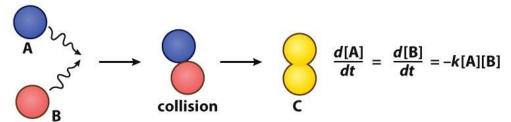

reaction rate =
$$-\frac{d[A]}{dt} = \frac{d[C]}{dt} = k[A][B]$$

A-B collisions

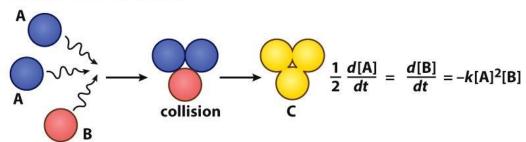
probability that A and B are adjacent = $P_A \times P_B \propto [A][B]$

$$P_A = N_A/N$$
$$P_B = N_B/N$$

Concentration and order of the reaction


Fundamental reaction types:

(A) first-order reaction



$$\frac{d[A]}{dt} = -k[A]$$

(B) second-order reaction

(C) third-order reaction

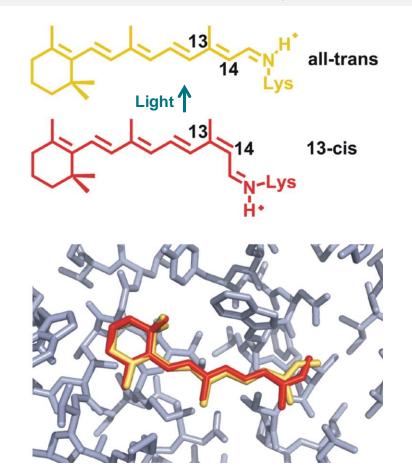
k unit

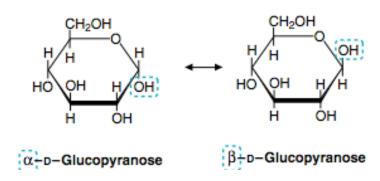
sec⁻¹

M⁻¹ sec⁻¹

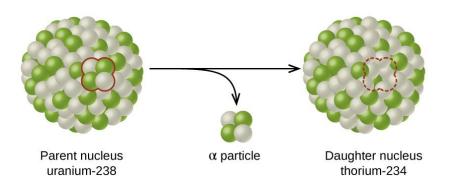
M⁻² sec⁻¹

- *k* is related to the frequency of collision depending of the environment
- It also depends on collisions that actually form products (not always the case)
- Order of the reaction is the number of molecules
- Unit of *k* depends on the reaction order (s⁻¹, M⁻¹s⁻¹, etc.)


the slower the reaction the higher is the order


Examples of 1st order reactions

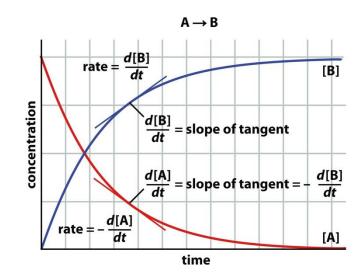
- Reaction that proceeds at a rate that depends linearly on only one reactant concentration
- Examples include decay, degradation, isomerization...

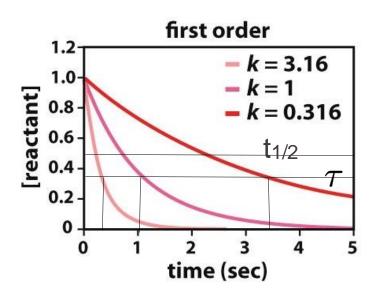

Retinal isomerization by photons

Carbohydrate mutarotation

Spontaneous decay of radioactive nuclei

1st Order Reactions: Determining kinetic parameters


Molecular decay or retinol isomerization can be modeled as

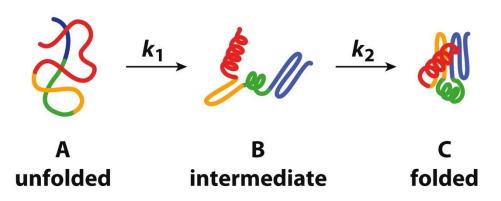

$$A \to B$$

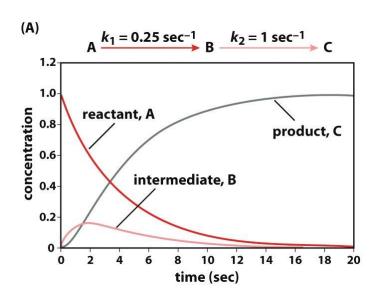
$$\frac{d[A]}{dt} = -\frac{d[B]}{dt} = -k[A]$$

• Rate of decay of reactant is proportional to its concentration via k [s⁻¹] constant; solving the 1st-order linear differential equation:

$$[A](t) = [A]_0 e^{-kt} = [A]_0 e^{-t/\tau}$$
 $\tau = 1/k$

- With $[A]_0=c_{(t=0)}$ is the initial concentration, τ is the characteristic time of decay (**lifetime or time constant**)
- Rate equations describe the time evolution of average A and B amounts (concentrations)
- Half-life $t_{1/2}$ (= ln2/k =0.693/k) is the time needed for the concentration of [A] to drop to half of its initial value





Protein folding can be considered a series of 1st order reactions

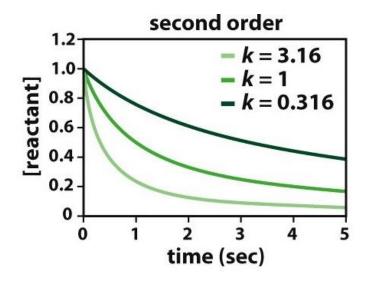
- Protein folding is a reaction with many intermediate steps.
- For simpler proteins (monomeric, no post-translational modifications), the folding process can be approximated as a series of 1st order reactions

$$\frac{d[A]}{dt} = -k_1[A]$$

$$\frac{d[B]}{dt} = k_1[A] - k_2[B]$$

$$\frac{d[C]}{dt} = k_2[C]$$

 To determine the concentration of each reaction component at each time point these equations need to be integrated


2nd order reactions

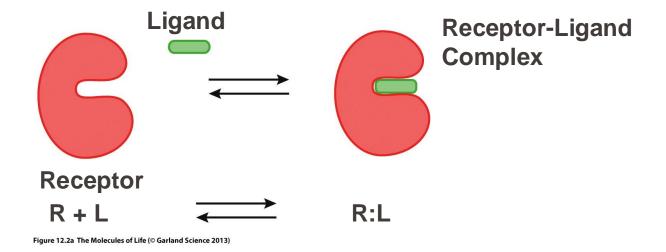
- More general case including 2 reactants whose concentrations impact reaction kinetics
- If A and B reactants come together to form a product C

$$A+B \stackrel{k}{\rightarrow} C$$

The rate equation can be written as:

$$\frac{d[C]}{dt} = k[A][B] \qquad \frac{d[A]}{dt} = -k[A][B]$$

- The rate of reaction (i.e. forming C) is proportional to the probability that A and B are at the same place (i.e., undergoing collision). Higher temperature promotes the reaction.
- Unlike the 1st order kinetics this case the dynamical equation of different species are coupled (i.e., you need to know the concentration of both A and B to determine reaction rate)

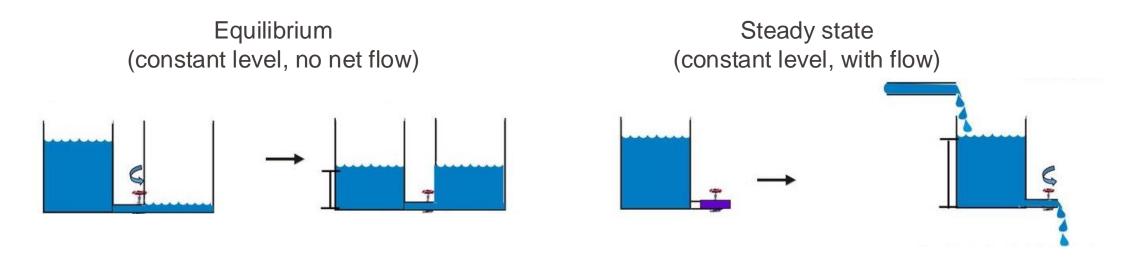


Reactions can be reversible

- Molecule binding can be approximated using 2nd order reversible reaction
- The complex is equivalent to a "reaction product" while the two binding partners are "reactants"
- For example, consider ligand-receptor case or drug binding:

$$L + R \underset{k_{off}}{\overset{k_{on}}{\rightleftharpoons}} LR \qquad \qquad \frac{d[LR]}{dt} = -k_{off}[LR] + k_{on}[L][R]$$

• L = concentration of ligands, R = concentration of receptors


Equilibrium and Steady-State conditions

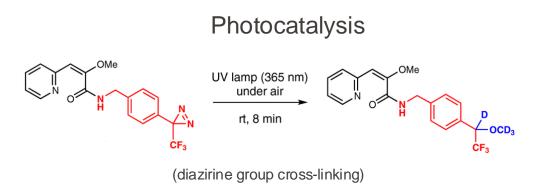
 At the equilibrium the reaction is at its steady state, thus the rate of LR product release is zero:

$$A+B \stackrel{\mathrm{k}_1}{\rightleftharpoons} C$$

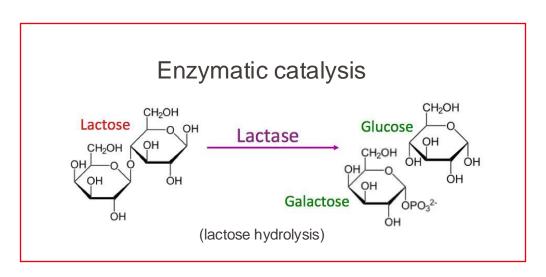
$$K_{eq} = \frac{k_2}{k_1} = \frac{[A]_{eq} [B]_{eq}}{[C]_{eq}}$$

• Steady state conditions can be reached also out-of-equilibrium, when concentrations do not change with time. This is always the case in cellular metabolic pathways (BC2)

In cells, basic metabolites and building blocks are constantly replenished



Catalysis and Enzymes

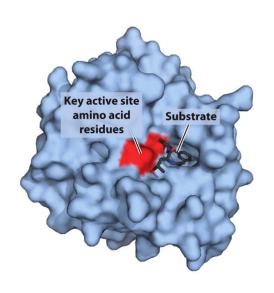


Catalysis of chemical reactions

- The modification of the rate of a chemical reaction, usually an acceleration, by addition of a substance (catalyst) not consumed during the reaction
- Catalysis can be achieved by light, chemical methods, proteins (i.e., enzymes) and even RNA (i.e., ribozymes)

Chemical catalysis

RNA catalysis



Enzymes

- Enzymes catalyze the hundreds of stepwise reactions of metabolism, conserve and transform chemical energy, and make biological macromolecules from simple precursors.
- While all proteins interact with other biomolecules, only ~10% of all proteins possess enzymatic activity.
- Enzymes are named by adding the suffix "-ase" to the name of their substrate or of their activity.
- Substrate binding site on the enzyme is known as the active site.
- They are named and classified based on the type of reaction catalyzed

TABLE 6-3	International Classification of Enzymes
INDLE	international classification of Enzymes

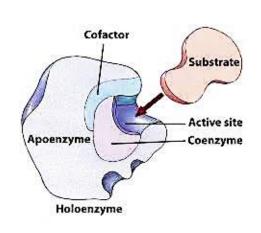
Class no.	Class name	Type of reaction catalyzed	
1	Oxidoreductases	Transfer of electrons (hydride ions or H atoms)	
2	Transferases	Group transfer reactions	
3	Hydrolases	Hydrolysis reactions (transfer of functional groups to water)	
4	Lyases	Cleavage of C—C, C—O, C—N, or other bonds by elimination, leaving double bonds or rings, or addition of groups to double bonds	
5	Isomerases	Transfer of groups within molecules to yield isomeric forms	
6	Ligases	Formation of C—C, C—S, C—O, and C—N bonds by condensation reactions coupled to cleavage of ATP or similar cofactor	

• The name enzyme comes from Greek "énzymon" which means "leavened with yeast"

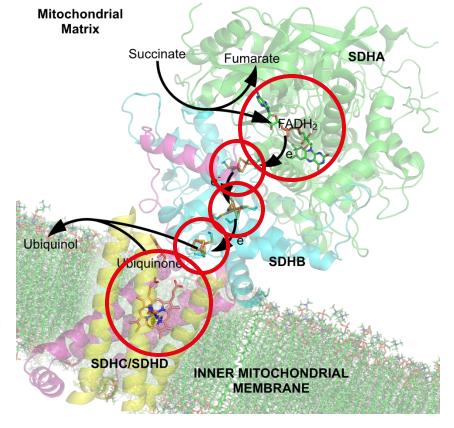
Enzyme cofactors

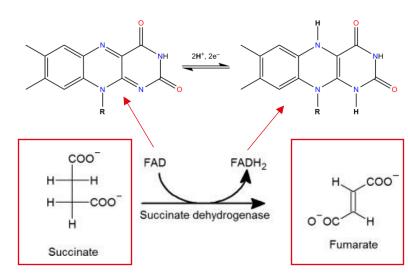
- Some enzymes require an additional chemical component called a **cofactor**.
- Cofactors can be inorganic ions, or complex organic or metalloorganic molecules called coenzymes.
- Vitamins are organic molecules essential for normal cellular processes, serving as precursors of coenzymes

TABLE 6-1	Some Inorganic Ions That Serv as Cofactors for Enzymes	
lons	Enzymes	
Cu ²⁺	Cytochrome oxidase	
Fe ²⁺ or Fe ³⁺	Cytochrome oxidase, catalase, peroxidase	
K ⁺	Pyruvate kinase	
Mg ²⁺	Hexokinase, glucose 6-phosphatase, pyruvate kinase	
Mn ²⁺	Arginase, ribonucleotide reductase	
Мо	Dinitrogenase	
Ni ²⁺	Urease	
Zn ²⁺	Carbonic anhydrase, alcohol dehydrogenase, carboxypeptidases A and B	


TABLE 6-2 Some Coenzymes That Serve as Transient Carriers of Specific Atoms or Functional Groups			
Coenzyme	Examples of chemical groups transferred	Dietary precursor in mammals	
Biocytin	CO ₂	Biotin	
Coenzyme A	Acyl groups	Pantothenic acid and other compounds	
5'-Deoxyadenosylcobalamin (coenzyme B ₁₂)	H atoms and alkyl groups	Vitamin B ₁₂	
Flavin adenine dinucleotide	Electrons	Riboflavin (vitamin B ₂)	
Lipoate	Electrons and acyl groups	Not required in diet	
Nicotinamide adenine dinucleotide	Hydride ion (:H ⁻)	Nicotinic acid (niacin)	
Pyridoxal phosphate	Amino groups	Pyridoxine (vitamin B ₆)	
Tetrahydrofolate	One-carbon groups	Folate	
Thiamine pyrophosphate	Aldehydes	Thiamine (vitamin B ₁)	

Flavin adenine dinucleotide (FAD)

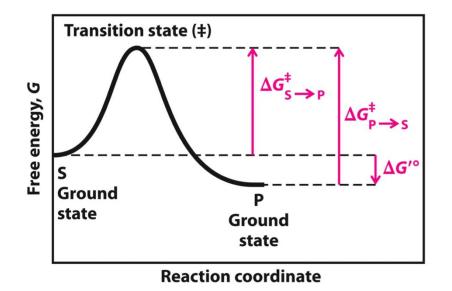


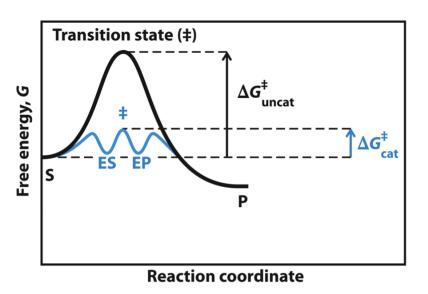

Enzyme cofactors

- Cofactors are often found in enzyme active sites where they actively contribute to catalysis of reactions
- In the absence of cofactor, enzyme is inactive (apoenzyme) and often unstable in solution
- Cofactor binding provides functionality, and this active complex is referred to as holoenzyme

Succinate dehydrogenase (SDH) has several cofactors

Background info:


- SDH is an enzyme component of oxidative phosphorilation and citric acid cycle
- Both processes are essential for energy metabolism inside the cell

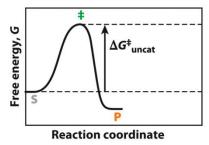

Enzyme properties

- Enzymes have extraordinary catalytic power and a **high degree of specificity for their substrates** and they accelerate chemical reactions tremendously (**10**⁵ **to 10**¹⁷-**fold**).
- They function in aqueous solutions under very **mild conditions of temperature and pH**, unlike many catalysts used in organic chemistry.
- Like other catalysts, enzymes **enhance reaction rates** by lowering activation energies. They have no effect on the **position of reaction equilibria**.

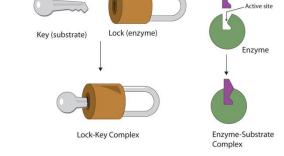
$$S \rightleftharpoons P$$

$$E + S \rightleftharpoons ES \rightleftharpoons EP \rightleftharpoons E + P$$

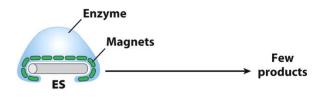
$$E_A \equiv \Delta G^{\ddagger}$$
 (activation energy)

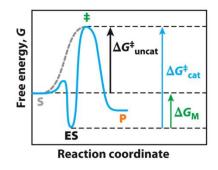


Transition state complementarity and rate enhancement

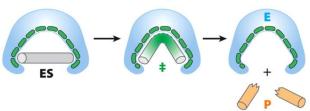

• Early theory from Fischer et al (1890s) proposed a "lock and key" model for enzyme-substrate interaction which explains the specificity, but does not explain why reaction rate increases

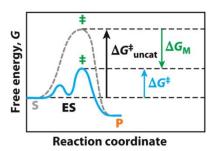
• Let's imagine a scenario where a substrate is converted into a product:





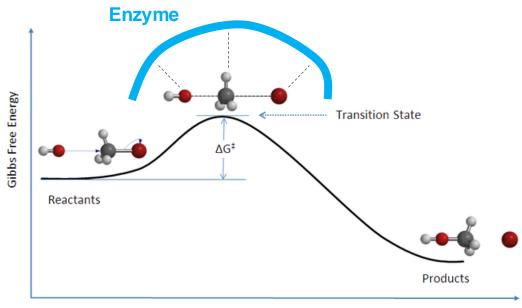
- Uncatalyzed
- High activation energy


(b) Enzyme complementary to substrate



- Enzyme binds substrate well
- The activation energy increases

(c) Enzyme complementary to transition state

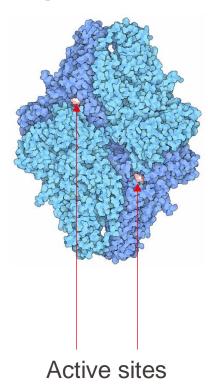


- Enzyme binds substrate less-well compared to (b)
- The activation energy decreases

Transition state complementarity and rate enhancement

- Enzyme-substrate interactions need to be sufficiently strong to lead to complex formation, but the full complement of such interactions is created with **substrate in a transition state conformation**
- The free energy (binding energy) released by the formation of these interactions partially offsets the energy required to reach the top of the energy hill.
- The transition state is not a stable species, but is a brief point in time that the substrate spends atop an energy hill

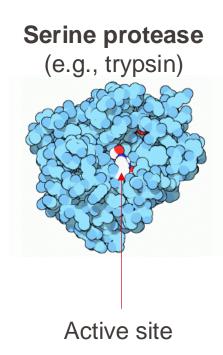
The enzyme brings these two reactants into close proximity and coordinates them in such a way that they form an unstable transition intermediate ultimately leading to the departure of the red group on the right side and formation of products.


Reaction Coordinate

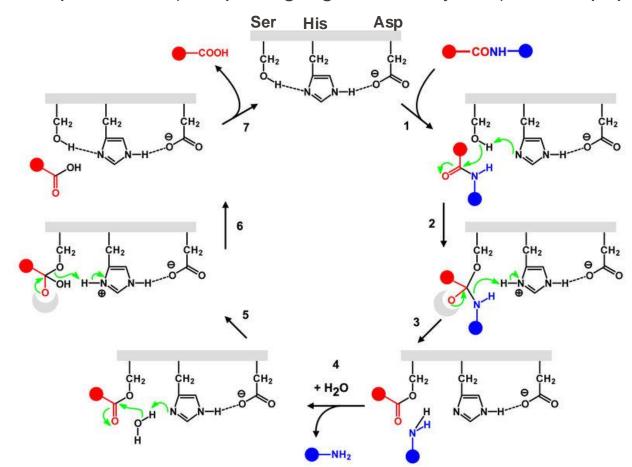
Examples of enzymatic reactions

• Many enzymatic mechanisms involve transfer of protons (general acid-base catalysis) or the formation of transient covalent bonds in the active site via amino-acids or cofactors

β-galactosidase


β-galactosidase cleaves galactose from carbohydrates (e.g., lactose)

Nucleophile is a chemical group that forms bonds by donating electron pair **Electrophile** forms bonds with nucleophiles by accepting electrons



Examples of enzymatic reactions

• Many enzymatic mechanisms involve transfer of protons (general acid-base catalysis) or the formation of transient covalent bonds in the active site via amino-acids or cofactors

Serine proteases (comprising digestive enzymes) cleave peptide bonds in proteins

Green arrows indicate the nucleophilic attacks (electron transfer)

Ser + His + Asp = Catalytic triad

Groups commonly involved in catalysis

- Amino-acids with exchangeable hydrogens in their side chains (i.e., bound to O or N) are particularly important for reaction catalysis
- Active site residues are often not proximal in sequence, but they are brought together in 3D structure
- Metal ions are also very important for certain enzymes and contribute either by (1) coordinating the substrate in the active site through ionic interactions or (2) by catalyzing oxidation/reduction reactions

Amino-acids with general acid:base properties

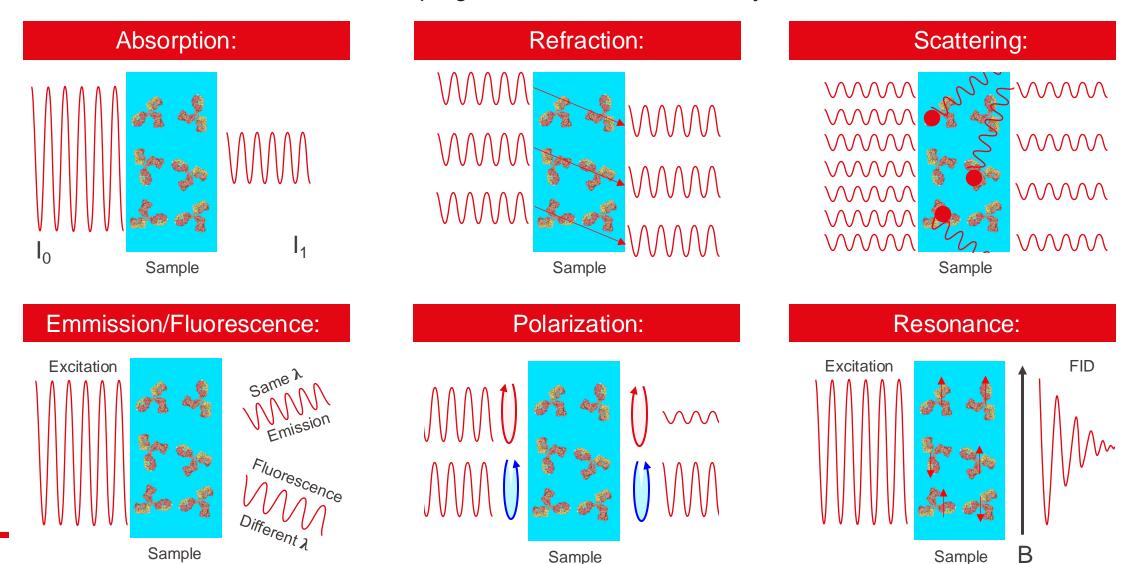
Amino acid residues	General acid form (proton donor)	General base form (proton acceptor)
Glu, Asp	R—COOH	R—COO-
Lys, Arg	R ⁺ H H R-NH ₂	
Cys	R—SH R—S-	
His	R-C=CH /+ HN CNH H	R-C=CH HN N:
Ser	R-OH	R-0-
Tyr	$R \longrightarrow OH$	R

Example of metal ion (Zn²⁺) assisted catalysis

$$\begin{array}{c} & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

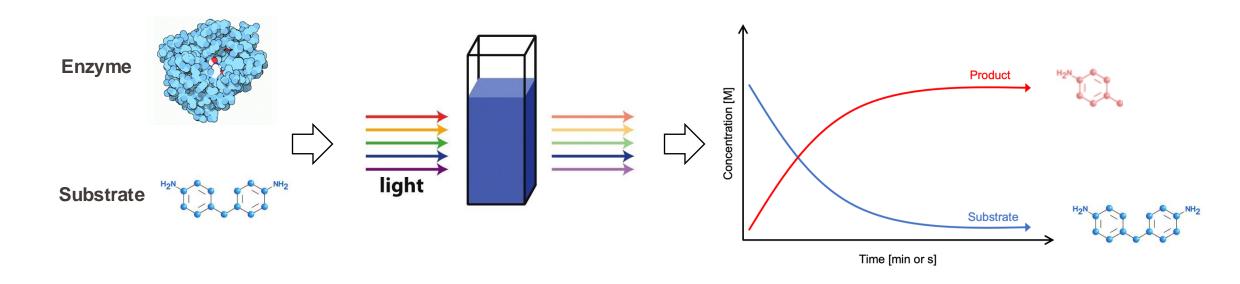
Enzyme substrate complex

Tetrahedral intermediate



Enzyme kinetics

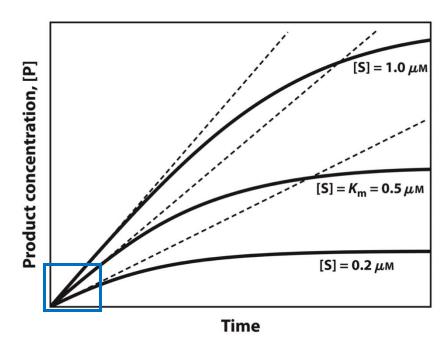
Biophysics is applied to measure reaction kinetics


- Different spectroscopic methods are exploited for the purpose of measuring reaction progress
- Reactants are combined and reaction progress monitored over time by a suitable detection method

Quantitative analyses of reaction rates

• If you consider a simple reaction where a substrate get converted into a product through the action of an enzyme:

- The amount of product will gradually increase while the amount of substrate decreases proportionally
- The rate at which the reaction takes place will differ depending on the experimental conditions (e.g., enzyme concentration, substrate concentration temperature), but it will also be dependent on the enzyme's capacity to catalyze reactions (i.e., reduce the activation energy).
- Measuring the catalytic properties of different enzymes is a discipline known as enzyme kinetics.


Measuring kinetic parameters of enzymes

- Studying the effects of substrate [S] or product [P] concentration is complicated as it changes with time
- The velocity (V) of the reaction will change proportionally with substrate concentration

$$E + S \rightleftharpoons ES \rightleftharpoons EP \rightleftharpoons E + P$$

$$V_{(t)} = k \left[S_{(t)} \right]$$

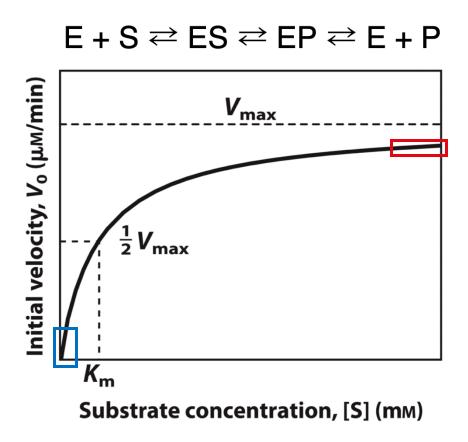
 $V_{(t)}$ - reaction velocity at time t k - rate constant (Arrhenius equation) $[S_{(t)}]$ - Substrate concentration at time t

$$V_{(t)} = k [S_{(t)}]$$

$$[S_{(t)}] = [S_0] - [P_{(t)}]$$

$$[P_0] = 0$$

$$V_0 = k [S_0 - 0]$$


$$V_0 = k [S_0]$$

• To simplify the problem, we only measure the **initial velocity of the reaction** (designated V₀)

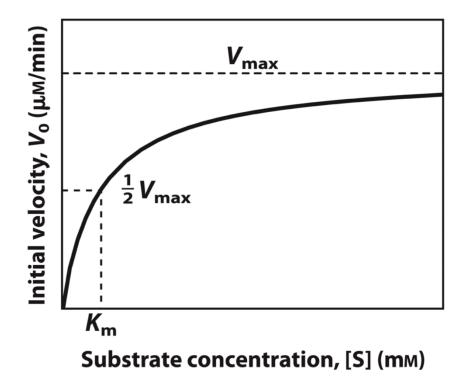
Measuring kinetic parameters of enzymes

- The initial velocity (V₀) expressed as a function of starting substrate concentration [S] represents a typical enzyme kinetics plot from which catalytic parameters can be extracted
- Note that all initial velocity measurements need to be performed under constant experimental conditions including temperature, enzyme concentration, buffer composition etc. The only variable is [S].

• At relatively low concentrations of substrate relative to the enzyme, V₀ increases almost linearly with an increase in [S]

If
$$[E] > [S]$$
 then $V_0 = k[S]$

• At higher substrate concentrations, V₀ increases by smaller and smaller amounts in response to increases in [S].


• The maximum value of reaction velocity that can be achieved under given experimental conditions is called V_{max}

Michaelis-Menten equation

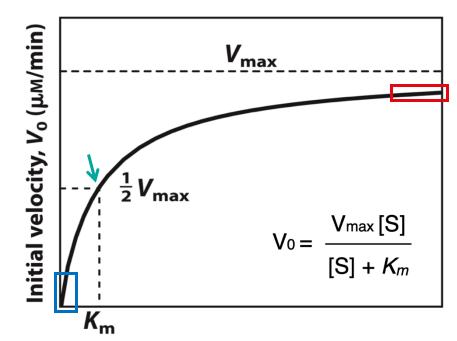
• If we assume that (i) enzymatic reaction moves strictly towards product generation (ii) the EP complex dissociation is a very fast process and that (iii) the V₀ reflects a condition where [ES] is at a steady state, then the reaction can be written as:

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\longrightarrow} E + P$$

ullet From this reaction we can easily derive the following equation that describes dependence of V_0 on initial substrate concentration

$$V_0 = \frac{V_{\text{max}}[S]}{[S] + K_m}$$

Where:


- Vmax = $k_2[E]$ (sometimes labeled as $[E]_{tot}$)
- $K_m = \frac{k_{-1} + k_2}{k_1}$ Michaelis constant
- This is a Michaelis-Menten equation that is widely used to describe the kinetic behavior of all enzymes that exhibit a hyperbolic dependence of V_0 on [S]
- This equation holds true for many enzymes under the steadystate conditions.

Michaelis-Menten equation

- The equation can be used to fit experimental data and calculate K_m, Vmax or k₂ parameters for any enzyme
- Different sections of the curve can be rationalized through this equation

$$E + S \stackrel{k_1}{\rightleftharpoons} ES \stackrel{k_2}{\longrightarrow} E + P$$

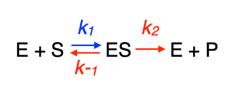
Substrate concentration, [S] (mm)

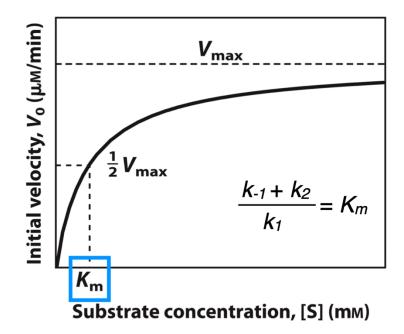
• When [S] is low (i.e., [S]<< K_m)

$$V_0 = \frac{V_{\text{max}}[S]}{K_m}$$
 $V_0 = k[S]$ Linear increase of V_0 with $[S]$

When [S] is high (i.e., [S]>>K_m)

$$V_0 = \frac{V_{\text{max}}[S]}{[S]}$$
 $V_0 = V_{\text{max}}$ Plateau at high [S]

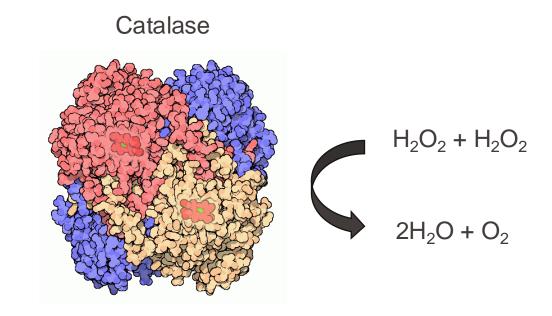

• When $[S] = K_m$


$$V_0 = \frac{V_{\text{max}} K_m}{2 K_m} \qquad V_0 = \frac{V_{\text{max}}}{2} \qquad \text{[S] at } \frac{1}{2} V_{\text{max}} \text{ equals to } K_m$$

What is the meaning of different constants

- The K_m is sometimes used as an indicator of the **affinity of an enzyme for its substrate**.
- Under the conditions that k_2 represents the rate limiting step the reaction ($k_2 << k_{-1}$) then the K_m expression can be simplified to k_{-1}/k_1 which is essentially a dissociation constant for the ES complex reaction
- It has concentration or K_d units but the values vary greatly even for different substrates of the same enzyme

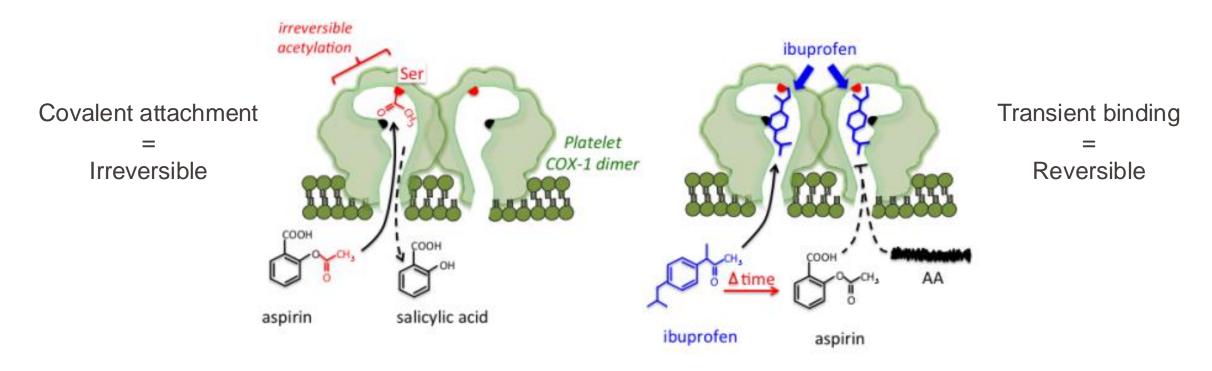
TABLE 6-6	K _m for Some Enzymes and Substrates
	n _m 101 301116 =11=y11163 arra 3ars3arates


Enzyme	Substrate	К _m (m м)
Hexokinase (brain)	ATP	0.4
	p- Glucose p- Fructose	0.05 1.5
Carbonic anhydrase	HCO ₃	26
Chymotrypsin	Glycyltyrosinylglycine N-Benzoyltyrosinamide	108 2.5
eta-Galactosidase	D- Lactose	4.0
Threonine dehydratase	L-Threonine	5.0

V_{max} and k_{cat}

- V_{max} and k_{cat} are connected through the equation: $V_{max} = k_{cat}$ [E]
- Both constants are used to depict enzyme efficacy when converting substrate into product
- For simple 2-step MM mechanism, $k_{cat} \equiv k_2$, but it can also be used more generally to depict the overall rate constant of a multi-step reaction.

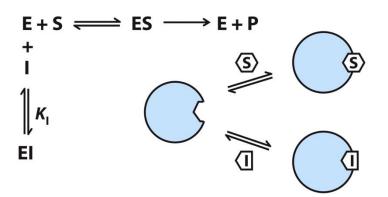
TABLE 6-7	Turnover Number, k_{cat} , of Some Enzymes		
Enzyme		Substrate	$k_{\rm cat}$ (s $^{-1}$)
Catalase		H ₂ O ₂	40,000,000
Carbonic anhydrase		HCO ₃	400,000
Acetylcholinesterase		Acetylcholine	14,000
$oldsymbol{eta}$ -Lactamase		Benzylpenicillin	2,000
Fumarase		Fumarate	800
RecA protein (an ATPase)		АТР	0.5

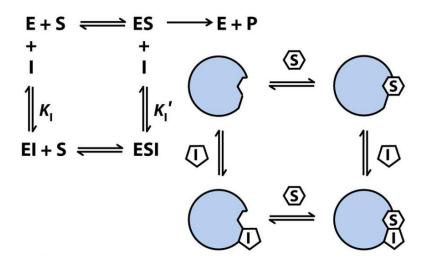


- k_{cat} is a 1st order rate constant and has units of s⁻¹.
- It is equivalent to the number of substrate molecules converted to product in a given unit of time on a single enzyme molecule. So sometimes it is referred to as "turnover number"

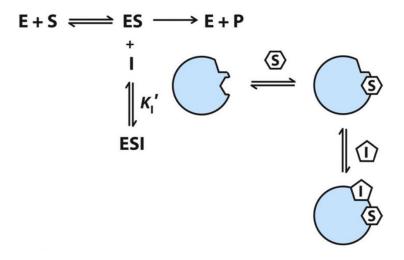
Enzyme inhibition

- Enzyme inhibitors are molecules that interfere with catalysis, slowing or halting enzymatic reactions.
- Enzyme inhibitors are among the most important pharmaceutical agents known (~50% of drugs on the market)
- Ibuprofen and Aspirin (acetylsalicylate) inhibits the enzyme called COX-1 that catalyzes the first step in the synthesis of prostaglandins, compounds involved in many processes, including some that cause pain.


• Inhibitors can be broadly divided into **reversible** and **irreversible** based on whether they achieve the desired outcome by transiently affecting to the target (reversible) or permanently (irreversible)


Reversible enzyme inhibition

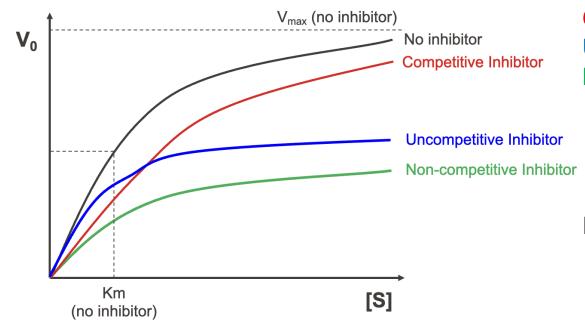
- Reversible enzyme inhibitors can act by **competitive**, **non-competitive** and **uncompetitive** mechanisms
- An inhibition constant (K_I) quantifies the strength of inhibitor in blocking the activity of an enzyme


Competitive

Non-competitive

Uncompetitive

A competitive inhibitor (I) directly competes with the substrate for binding to the active site of an enzyme. They cannot bind at the same time.


A non-competitive inhibitor (I) binds the enzyme in a different site and independently from S. It does not directly interfere with the binding of S to E but reduces the [] of active ES.

An uncompetitive inhibitor (I) binds the enzyme in a different site but it does bind only the ES complex. It does not directly interfere with the binding of S to E but reduces the [] of active ES

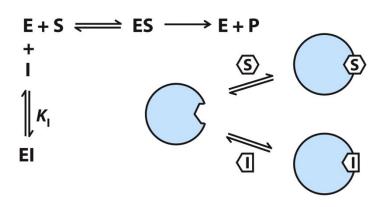
Reversible enzyme inhibition

- Depending on the inhibition mechanism the kinetic parameters are impacted differently
- Inhibition is also dose dependent (i.e., the higher the inhibitor concentration the greater the inhibitory effect)

Competitve:Km is higher V_{max} stays the sameUncompetitive:Km is lower V_{max} is lowerNon-competitive:Km stays the same V_{max} is lower

Example for competitive inhibition:

$$a = 1 + \frac{[I]}{k_I}$$
 $V_0 = \frac{V_{\text{max}}[S]}{[S] + aK_m}$


• Impact on kinetic parameters is quantified through parameter α which is dependent on K_I and the concentration of inhibitor [I]

 $^{^{*}}$ These are apparent Km and V_{max} constants since kinetics is measured in the presence of an inhibitor. It does not mean that the enzyme itself changed but that rather the measured readout is altered.

Reversible enzyme inhibition

• Equations used to describe enzyme kinetics in the presence of different types of inhibitors

Competitive

Non-competitive

$$E + S \Longrightarrow ES \longrightarrow E + P$$

$$\downarrow I \qquad \downarrow I \qquad \qquad \downarrow S$$

$$\downarrow K_{I} \qquad \downarrow K_{I}' \qquad \qquad \downarrow S$$

$$EI + S \Longrightarrow ESI \qquad \boxed{I} \qquad \qquad \downarrow \boxed{I}$$

$$\boxed{I} \qquad \qquad \boxed{S}$$

$$\boxed{I} \qquad \qquad \boxed{S}$$

$$E+S \Longrightarrow ES \longrightarrow E+P$$

$$\downarrow i \qquad \qquad \downarrow S$$

$$\downarrow \kappa_i' \qquad \qquad \downarrow S$$

$$ESI \qquad \qquad \downarrow \uparrow \downarrow I$$

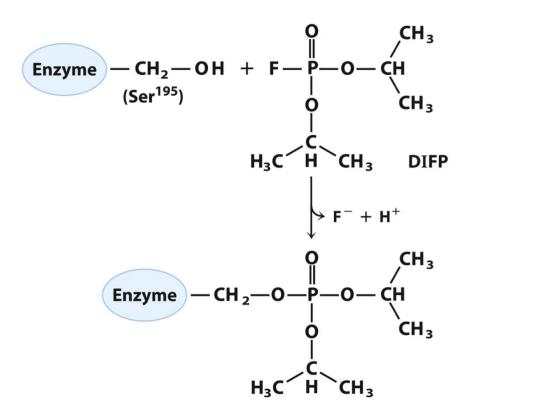
$$\downarrow I \qquad \qquad \downarrow I$$

$$\downarrow I \qquad \downarrow I$$

$$\downarrow$$

$$V_0 = \frac{V_{\text{max}}[S]}{[S] + \alpha K_m}$$

$$V_0 = \frac{V_{\text{max}}[S]}{a[S] + aK_n}$$


$$V_0 = \frac{V_{\text{max}}[S]}{a[S] + K_n}$$

• α is derived for K_1 (binding to enzyme), while α corresponds to K_1 (binding to enzyme-substrate complex)

Irreversible enzyme inhibition

- Irreversible inhibitors bind covalently to or destroy a functional group on an enzyme that is essential for the enzyme's activity.
- An example of irreversible covalent inhibitor of the serine protease, chymotrypsin, is diisopropylfluorophosphate (DIFP) which covalently attaches to the catalytic serine residue (part of the catalytic triad)

- A special class of irreversible inhibitors are the **mechanism-based (suicide)** inactivators.
- A suicide inactivator undergoes the first few chemical steps of the normal enzymatic reaction, but instead of being transformed into the normal product, the inactivator is converted into a very reactive compound that combines irreversibly with the enzyme.

Summary

- Reaction rates are inversely correlated to the activation energy
- The half-life of a reaction provides a measure of the relative speed at which the product is generated
- Multistep reactions have intermediates that build up as the reaction is initiated, but disappear as the reaction goes to completion
- A steady state condition in a reaction means that a concentration does not change with time although the reaction is occurring
- Enzymes reduce the activation energy required for chemical reactions
- Enzymes are proteins often complexed with cofactors/ coenzymes
- The ratio of forward and reverse reactions must be considered in calculating the approach to equilibrium
- Enzymes Kinetics describe how reactions change in response to changes in experimental parameters
- Concepts of Vo, $V_{max} K_m$, k_{cat} and specificity constant (k_{cat} / K_m)
- The principle of reversible and irreversible Enzyme Inhibition